Family-Based Association Tests with longitudinal measurements: handling missing data.
نویسندگان
چکیده
Several family-based approaches have been previously proposed to enhance the power for testing genetic association when the traits are measured longitudinally or repeatedly. In this paper, we show that some of these FBAT approaches can be easily extended to accommodate incomplete data and remain unbiased tests. We also show that because of the nature of FBAT approaches, we can impute the missing phenotypes without biasing our tests and achieve higher power. We propose two imputation techniques based on E-M algorithm and the conditional mean model, respectively. Through simulation studies, these two imputation techniques are shown to have correct false positive rate and generally achieve higher power than complete case analysis or simple mean-imputation. Application of these approaches for testing an association between Body Mass Index and a previously reported candidate SNP confirms our results.
منابع مشابه
Marginal Analysis of A Population-Based Genetic Association Study of Quantitative Traits with Incomplete Longitudinal Data
A common study to investigate gene-environment interaction is designed to be longitudinal and population-based. Data arising from longitudinal association studies often contain missing responses. Naive analysis without taking missingness into account may produce invalid inference, especially when the missing data mechanism depends on the response process. To address this issue in the ana...
متن کاملA multivariate family-based association test using generalized estimating equations: FBAT-GEE.
In this paper we propose a multivariate extension of family-based association tests based on generalized estimating equations. The test can be applied to multiple phenotypes and to phenotypic data obtained in longitudinal studies without making any distributional assumptions for the phenotypic observations. Methods for handling missing phenotypic information are discussed. Further, we compare t...
متن کاملA comparison of multiple imputation methods for handling missing values in longitudinal data in the presence of a time-varying covariate with a non-linear association with time: a simulation study
BACKGROUND Missing data is a common problem in epidemiological studies, and is particularly prominent in longitudinal data, which involve multiple waves of data collection. Traditional multiple imputation (MI) methods (fully conditional specification (FCS) and multivariate normal imputation (MVNI)) treat repeated measurements of the same time-dependent variable as just another 'distinct' variab...
متن کاملBayesian Sample Size Determination for Joint Modeling of Longitudinal Measurements and Survival Data
A longitudinal study refers to collection of a response variable and possibly some explanatory variables at multiple follow-up times. In many clinical studies with longitudinal measurements, the response variable, for each patient is collected as long as an event of interest, which considered as clinical end point, occurs. Joint modeling of continuous longitudinal measurements and survival time...
متن کاملModeling Correlation in Incomplete Longitudinal Data: The Case of Fruit Fly Mortality Data
Longitudinal studies are prevalent in clinical trials, biological and social sciences where subjects are measured repeatedly over time. Modeling the correlations of repeated measurements on the same subject and handling missing data are challenging problems in the statistical analysis of such data. The situation is exacerbated knowing that the presence of missing data can hamper modeling of dep...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Human heredity
دوره 68 2 شماره
صفحات -
تاریخ انتشار 2009